
g o b e y o n d j m s

Web Services & JMS
Standards based message delivery across the web

Technical White Paper

 Page 1Web Services & JMS
Standards Based Message Delivery Accross the Web

Abstract .. 2
Introduction ... 2
What are Web Services? .. 3

Service discovery .. 4

Service description ... 4

Service operation .. 4

What are the challenges with Web Services and why? 5
How do we address these challenges? .. 6

The SpiritArchitecture and Web Services ... 6
The Infrastructure Answer .. 8
Sidebar 1 - Strawberry Growers ... 9

Grower ..9

Broker ... 9

Buyer .. 9

Other ... 9

Sidebar 2 - Strawberry Growers Solution ... 10

CONTENTS

Abstract

Web Services. What are they? What can they do?
We have all been bombarded by the buzzwords like
Java� , JMS, SOAP, J2EE, CORBA and RMI to
name but a few. The idea was to make distributed
systems easier to build, easier to deploy and easier
to maintain. The advent of the World Wide Web, the
Internet, and the drive towards Web Services have
all contributed to the pressure to deliver enterprise
systems in a widely distributed environment. In this
whitepaper we explain what Web Services are, what
they can do and, equally important, what they
cannot do. We show how the SpiritArchitecture can
be used to provide open, standards-based multi-
plug communication through open JMS, generic
connectivity through JCA, performance gains
through JCACHE intelligent caching, and business
transaction management through dynamic event
management - all of which alleviate many of the
problems in delivering complex Web Services.

Introduction

Building large-scale distributed systems is not an
easy task. In a distributed system, building to scale
while remaining flexible requires an understanding
of the whole system and not just of individual
components; this is in part why the promises of the
Common Object Request Broker Architecture
(CORBA) and the Internet Interoperable Object
Protocol (IIOP) failed to deliver. Few CORBA/IIOP-
based solutions dealt adequately with scalability in
a loosely-coupled environment and as a result,
many such systems ended up being crippled by
large server-based bottlenecks. Even fewer
delivered the flexibility required in distributed
systems, in particular flexibility at the level of
business transactions - the flexible, choreographed
exchange of business events.

Earlier interchange standards such as EDI
(electronic data interchange) have only achieved
limited penetration in Fortune 500 companies
because the formats are ambiguous or overloaded,
and because - unlike ebXML for example - they

don't address transaction 'choreography' - the way
multiple interactions are sequenced to achieve a
complete and successful business transaction.

The advent of the Java� environment and the rise
of XML (extensible markup language) present a
fundamentally different landscape from the one that
was prevalent at the time of CORBA/IIOP. A key
difference is the ability to build portable applications
using Java and the ability to seamlessly exchange
information between applications using XML. More
recently, the rise of Enterprise Java Beans (EJB)
and Remote Method Invocation (RMI) fired
everyone with enthusiasm but little was learned
from the experiences of the past. Unfortunately,
EJB and RMI are little more than CORBA/IIOP in
Java clothing.

Dissatisfaction with both the CORBA/IIOP and EJB/
RMI accounts for the popularity of Message
Oriented Middleware (MoM) and the Java Message
Service API (JMS) and the rise of "fire-and-forget"
one way messaging (e.g. UDP) rather than request/
response as a more scalable communications
pattern for delivering distributed systems. Couple
that with XML as a core technology for encoding
information and we move rapidly towards Web
Services, the current movement to be adopted in the
world of distributed systems and Java� 2 Platform,
Enterprise Edition (J2EE or Enterprise Java).

What is new about Web Services and J2EE to
warrant all the hype? This paper provides a
common understanding as to what Web Services
are, what they are for, and looks at some of the
important challenges that they do not adequately
address. In doing so we will look more closely at the
benefits of standards based open multi-plug
communication, multi-channel delivery and dynamic
event flexibility and the business critical role of this
standards based infrastructure in the construction,
deployment and subsequent maintenance of Web
Services.
 Page 2Copyright ©SpiritSoft, Inc. All rights reserved. Published 2000-2002

What are Web Services?

Web Services are a new generation of web
application components. They move away from the
monolithic web applications of the past by being
self-describing and modular. As a result they can be
published, located and invoked across the Internet
providing their particular function to anyone that
wants to use it. A traditional web application might
involve many Web Services in doing their jobs and
these might be internal to the application owner's
domain or might involve disparate web-based
functions scattered about on the Internet.

A web service can perform a range of functions from
simple requests to complicated business
processes. A simple example might be to provide
foreign exchange conversion and a more complex
example might be to provide a credit card
transaction or a complex set of financial trades.
What differentiates Web Services from traditional
applications we see on the web today is that, once
deployed, other applications-not just browsers-can
locate various relevant services, understand how to
communicate with them and then ask them to do
things. Web Services can be seen as a natural
evolution of component-based architecture to the
worldwide Web.

Web Services work by explicitly declaring what they
do, how they wish to communicate and what
vocabulary they understand. This is encoded and
held in a global registry that other Web Services can

interrogate. At first glance this isn't all that different
from CORBA, but what makes it more compelling is
the introduction of both Java and XML to the
situation. XML is one of the fundamental building
blocks for Web Services. It is used to encode how
Web Services communicate, what services they
offer and the methods that they execute. If XML is
the key to descriptive semantics for Web Services
then Java technology is the engine upon which
many services will be built and deployed.

In essence, Web Services address the problems in
bridging the semantic gap that occurs when two or
more businesses wish to transact by providing a set
of specifications for multi-protocol business
management based on the Simple Object Access
Protocol (SOAP), Web Service Description
Language (WSDL) and Universal Description
Discovery and Integration (UDDI) repositories that
leverage complementary initiatives such as
Electronic Business XML (ebXML).

W3C has a proposed service stack that documents
the likely architecture of any web service and breaks
it down into a wire stack, a description stack and a
discovery stack in which SOAP, WSDL and UDDI
each plays its part.

SOAP plays the role of wrapping data and functions
as messages with a Quality of Service (QoS)
indicator to fit on an appropriate communications
protocol.

Figure 1: An overview of the web service architecture stack [from, "A summary of the W3C Web Services Workshop"]
Web Services & JMS
Standards Based Message Delivery Accross the Web

 Page 3

WSDL allows us to ask questions about how we
want to talk and what vocabulary we wish to use.
UDDI allows us to tell the world what we have, and
UDDI registries (or directories) from Microsoft, IBM,
Ariba already exist for this purpose. ebXML -
although it overlaps with UDDI in its provision of
registries and discovery service - provides the
higher-level message sequencing and generic
business process coordination upon which business
transactions are made.

Service discovery

The challenge of service discovery is at the very
core of what the eCommerce revolution is all about.
There has never been a common way to easily get
information about what standards different
companies support, and there is no single point of
access to all markets of opportunity. As a result it
has not been possible to easily connect with all the
trading partners in any one domain. What has been
missing is the ability to access information about
trading partners and how to integrate with them.
This fundamental challenge is what has limited the
delivery of B2B collaboration on the web, making it
harder for buyers to get a return on their
eCommerce investment and for all B2B participants
to add trading partners and services at a cost low
enough to make it attractive.

The generic solution to this is the creation of a
service registry architecture that presents a
standard way to query and maintain information
needed for the interoperation of businesses so that
the information can be shared and globally
distributed.

The UDDI project is an initiative to create a global,
platform-independent, open framework to enable
businesses to discover each other, define how they
interact over the Internet, and share information in a
global registry and is the favored Web Services
solution to service discovery.

UDDI registries are one of the fundamental building
blocks that will enable businesses to interconnect at

low cost easily and quickly in order to transact using
their preferred applications.

The core component of the UDDI specification is the
UDDI business registration. This is an XML file used
to describe a business entity and its Web Services.
In this sense it is a more semantic Universal
Resource Locator (url). The UDDI specification is
based on the Simple Object Access Protocol
(SOAP), which is used to define the protocol for
service registration, enabling anyone who can be
SOAP conformant to find or update an existing
service or register a new one.

Service description

Service description requires the capturing of the
interface, the protocol bindings and the deployment
details of services. This is what the Web Services
Description Language (WSDL) is all about. It is an
XML schema that complements UDDI by providing
a uniform way of describing the abstract interface of
a service and the protocol binding to which they
adhere. A typical service might offer access to
"widget buying" but only offer it through a SOAP
message embedded in an HTML request sent over
HTTPS, or a SOAP message sent through a JMS
connection on a particular port doing HTTP
tunnelling. UDDI will incorporate WSDL as the
means by which services are encoded into UDDI
compliant repositories.

Service operation

Service operation is all about the ability to interact
with a service. Interaction is the ability to execute
functions against a service by providing data as
parameters to functions and receiving
corresponding data for return values. This is the
basis of the Simple Object Access Protocol (SOAP).
SOAP provides a more atomic mechanism for this,
based on XML. While this is analogous to CORBA
and IIOP, it also provides an easily understood (by
humans and processes) on-the-wire format for such
interaction. Being widely accepted by both the
Windows and non-Windows communities it has the
added advantage of bringing together the web
 Page 4Copyright ©SpiritSoft, Inc. All rights reserved. Published 2000-2002

community as a whole and so raises the debate
above technologies such as Java.

SOAP however is not enough. It is used by WSDL
(WSDL provides binding to SOAP 1.1 endpoints)
and UDDI (SOAP is used to describe the interaction
protocol with the UDDI repository) as a way of
encoding functional access and data passing. It is
not enough because it doesn't deal with the
sequence of interactions that makes up a business
transaction. This is the remit of protocols such as
ebXML, Biztalk and Rosetta (each with their own
conversation or "partner interchange process"
definitions) for generic business exchange and
fpML, fixML, etc., for financial services. Earlier EDI
standards like X12 on the other hand contained a
number of ambiguities and did not address the
lifecycle of a long-running business interaction.

What are the challenges with Web
Services and why?

While the fundamental principles that underpin Web
Services are sound, and the ability to re-use
components is certainly an attractive one, they are
not new. CORBA and now J2EE in the guise of JSP
and EJB technology are examples of similar service
oriented architectures to those proposed by the
Web Services initiative. What has changed that
makes Web Services more interesting is that the
"on-the-wire" protocol and the service description
are XML derivatives. By adopting a document /
message based interaction - rather than call and
return - Web Services have begun to blur the line
between synchronous and asynchronous
interactions.

Let us separate Web Services into a number of
categories. First, there are those that need to
perform some simple function and return some
simple values. The business transaction they enact
is a simple request-response pairing. Secondly,
there are those that need to perform some more
complicated business transaction with the enacted
process being a flow of requests from one web

service to another, and with the response being
more complicated than a single response. These
sorts of Web Services may also require a degree of
customization of the processes that they enact
based on the contextual identity (e.g. who you are,
what your interests are, what your buying habits are)
of the requestor. Finally, the third example would
build on the second, adding the ability of the web
service itself to proactively distribute events which
encapsulate change and new information to
interested parties. Figure 2 (see sidebar 1
Strawberry Growers) provides an architectural
overview of what such a service might look like.

An example of a simple web service is one that is
used to calculate exchange rates for tourists. Such
a service might be the backend to a web kiosk and
at the same time be available to some smaller tier 3
banks. In this way the service is shared across a
range of users.

An example of a web service that requires a more
complex business process is to provide brokerage
facilities between buyers and growers of
strawberries. In this service the buyers talk to the
broker to place an order. The broker sources the
order from any stock available and places orders
with growers. The complex business process
requires handling of an event stream that results
from the initial order placement from the buyer.
From a business perspective the order is seen as
outstanding until the order is fulfilled, the order is
aborted or the order times out. An order might be
partially or wholly fulfilled. The web service needs to
ensure that the flow of events that make up the
business transaction is managed and is flexible.
There is a high likelihood that no two buyers and no
two sellers are alike; each will want to talk to the
broker in his own terms. This is not an arbitrary
requirement. It is fundamental to the protection of
the value chain as they see it.

The final example of a complex web service is one
that has a high fan-out feedback loop. If we build on
the strawberry grower example, adding a
requirement to distribute price changes or
Web Services & JMS
Standards Based Message Delivery Accross the Web

 Page 5

availability changes to buyers, then we change the
web service that the broker provides to one that is
now a true marketplace with dynamic pricing. Each
transaction can have an impact on the current price
and availability. External events might change the
price too. Imagine what happens if one area, packed
with strawberry growers, suffers from a torrential
downpour that results in half of their strawberries
being wiped out. This also has an impact on price
and availability.

The last two examples have very specific
requirements. The complex web service requires
flexibility in the way in which events are handled and
mapped to business transactions, the aim being to
enable the buyer, seller and broker to perform
business transactions according to their
preferences. In this way they can monitor and
account for the business transaction as they
require, and at the same time they should be able to
communicate using their preferred mechanisms
(e.g. http, https, leased line with JMS compliant
messaging solution or even straight sockets).

Complex Web Services require a high fan-out
feedback loop to publish information to interested
parties in much the same way as financial services
do today for pricing information. Interest is
declarative and receipt is decoupled from the
source. This provides near real-time feedback in
support of decisions. Conceivably a decision can be
initiated by a human or a reactive rule that decides
what to do when a price rises above or falls below a
threshold. Thus the web service becomes a reactive
and not just a static service. Reactivity may apply to
a wide range of potential usages and enable a more
active approach to business decisions. To do this,
a wide event plane is needed so that the events that
underpin business transactions or informational
notification traditionally associated with price and
news feeds can be utilized for business transaction
monitoring and management, intelligent routing of
information and reactive rule support for real-time
decision making.

The challenge with Web Services technology today
is the lack of explicit support for real-time business
management and business flexibility. The
technologies that underpin Web Services - SOAP,
UDDI, WDSL, and ebXML - do not by themselves
address this. What is required is technology that
augments and complements existing Web Services
architectures that can provide flexibility, caching
and loosely coupled high fan-out (1-to-many)
notification all of which are potential solutions to
these problems. The aim is to manage complex,
multi-partner processes where some response
times may be measured in hours or days rather than
in sub-seconds. To handle long-running business
transactions we have learned that we have to
stretch or even break the synchronous call/return
interface and offer more loosely coupled solutions.

How do we address these challenges?

What is needed is an intelligent infrastructure to
support these requirements. Intelligence is needed
to leverage existing network protocols whilst routing
and caching information. Intelligence is also needed
to provide business flexibility by managing events in
a distributed environment. And an open
communications mechanism is needed to
harmonize connectivity and to take advantage of
existing communications technology.

The SpiritArchitecture and Web
Services

The SpiritArchitecture is a suite of tools that
provides standards-based open multi-plug
communication, multi-channel delivery and dynamic
event flexibility. The SpiritArchitecture has grown up
in the Internet age with the experience of people
who have delivered mission critical systems in
distributed environments akin to those found in
financial services, investment banking and
enterprise workflow solutions. All of this experience
has been brought to bear to produce a collection of
well-defined tools that provide business benefit in
and of themselves as well as being more than just
the sum of their parts.
 Page 6Copyright ©SpiritSoft, Inc. All rights reserved. Published 2000-2002

The SpiritArchitecture comprises SpiritWave, for
open JMS compliant messaging; SpiritLite, for web,
wireless and real-time delivery; SpiritBroker, for
connectivity; transformation, filtering and routing;
and multi communication technology support;
SpiritCache, for open standards-based caching of
information where you need it; and SpiritIntellect, for
dynamic business event management.

All of the tools are XML aware and are based on the
Java platform. They complement Web Services by
offering J2EE compliant solutions that work
seamlessly to provide messaging, connectivity,
routing and caching wherever you need it through
SpiritWave, SpiritLite, SpiritBroker and SpiritCache,
as well as dynamic business event flexibility,
through SpiritIntellect, to manage business
processes and business transactions that can grow
and evolve as businesses change.

Figure 3: The SpiritArchitecture
Let's take a closer look at out Strawberry grower and
buyer example. Figure 4 (see sidebar 2 Strawberry
Growers Solution)

To review, there are three stakeholders in this
process. The Buyer who sends order requests to the
Broker, the Seller who offers stock to the Broker and
the Broker who mediates between the buyer and
seller. In this example all of them are using SOAP as
their on-the-wire protocol.

Half of the Sellers use a JSP front end and an http
connection to talk to the Broker and the other half
use a JMS connection with http tunnelling. The
connections between the Broker and the Buyers
also vary, with 25% using a JAXM interface, half
using JMS and 25% using https.

Three quarters of the Sellers and the Buyers have
adopted ebXML for managing their business
transactions and do nothing more than follow the
standard for interchange. However the bigger
growers, about 25% of the total, have legacy
systems that expect X12 or UN/EDIFACT
messages, and so need a component that offers
ebXML/X12 transformation. In particular the way
that they journal and account for stock and
shipments is quite different from ebXML's process
and also different from each other's.

A similar situation arises for the buyers. The big
corporate buyers have specialized features that
they need to exploit in the way they conduct
business. In the case of one of the leading buyers,
a large supermarket, they place an order but the
order must be sourced from at least 5 different
growers.

The broker needs to manage such disparate needs
to stay in business and yet provide a low cost
mechanism to manage the simple cases as well as
the complex cases.

The story is further complicated when the large
supermarket and two large growers move to
wireless and embedded notification. The
supermarket automatically orders more
strawberries as existing stock figures are updated.
Growers are able to walk around the fields
assessing the quality and quantity of their crop
rather than waiting until they get back to the
warehouse. This information feeds into the broker
as availability, quality and price statistics in real-
time.
As the Broker expands the client base, both growers
and sellers, it becomes more important to cache
Web Services & JMS
Standards Based Message Delivery Accross the Web

 Page 7

information for selected clients as well as at the
Broker's IT center.

The architecture, shown in Figure 4, (see sidebar 2
Strawbery Growers Solution) represents a classic
Web Services solution that uses the normal
technology and leverages the SpiritArchitecture
providing the ability to communicate with anything
over anything and doing it from anywhere. It
provides the caching where it is needed and the
dynamic business event flexibility required to deliver
the business transactions and reflect the customer's
exact requirements in the way in which they want to
do business.

In this way the SpiritArchitecture provides the
strawberry buyers, growers and brokers with real-
time business event management, intelligent
caching to ensure information is accurate and
timely, and a unified communications infrastructure
enabling all parties to communicate and transact on
their own terms as well as being able to monitor for
anomalies in related information which might affect
decision making.

The Infrastructure Answer

The mantra at the start of this whitepaper was to
provide standards-based open multi-plug
transportation, multi-channel delivery and dynamic
event flexibility. Taking a holistic approach to these
requirements enables us to look for a more unified
and harmonious solution.

If tools can be built that unify the event plane,
provide open caching, open loosely coupled
communication and that can flexibly monitor and
manage business transactions, we will have
succeeded in providing the open standards based
multi-plug communication, generic connectivity,
intelligent caching and business transaction
management that we alluded to at the start of this
whitepaper. If we can provide multi-plug
communications and multi-channel delivery, and
utilize them as a transport for a decoupled caching
solution and for dynamic event management then

we have an architecture that is harmonious and is
more than the sum of its parts. We should be able to
receive information from any source and leverage
any investments we have made with existing
communications technology. We should be able to
cache information wherever we need to and from
whatever source. We should be able to monitor and
manage business transactions using dynamic event
management regardless of the origin of the events.

Such an architecture would need to be
complementary to Web Services technology by
being deployable within an EJB application server
or within a JSP or web server. It should be able to
play a dynamic and flexible role within the Web
Services solution by providing intelligent routers for
requests and responses (SOAP servers). It should
be able to provide the business monitoring and
management of SOAP data streams that underpin
business work flow in technologies such as ebXML,
fpML and fixML.

About SpiritSoft

SpiritSoft develops open-standard enterprise
messaging-based technologies and tools that enable
dynamic business interactions across diverse
applications and devices. The company's
SpiritArchitecture is the only complete integration
platform that meets the challenges of building, deploying
and managing distributed systems. SpiritSoft's open,
standards-based approach leverages Java� Message
Service (JMS) and XML technologies to enable users to
seamlessly integrate with legacy technologies and any
proprietary middleware. SpiritSoft's technology delivers
platform-independent multi-plug messaging, universal
caching, multi-channel delivery and dynamic event
management, which ensures that the right information is
delivered to the right place at the right time.

SpiritSoft is privately held and based in Boston, Mass.,
with offices in New York and its European HQ in London,
UK. Founded in 1997, SpiritSoft is funded in part by
Reuters Greenhouse Fund and Catalyst Fund. Key
customers include E*Trade, Instinet, LogicWorx, Market
Data Corporation, Persistence, Philips, Prebon Yamane,
Reuters, Sungard, Tullet & Tokyo Liberty and The Vantra
Group.
 Page 8Copyright ©SpiritSoft, Inc. All rights reserved. Published 2000-2002

Web Services & JMS Page 9

Sidebar 1 - Strawberry Growers

Grower

External interaction is based on ebXML with few
variants but enough to cause a headache in
management of order flow from outside.This is
because the Order Management system is fairly old
and uses old EDI techniques which didn't have flow
defined.

Broker

The Settlement system is bespoke as is the Order
Matching application because each client of the
Broker has different order placement and order
settlement rules that must be followed. The Broker
spent a lot of money on a data driven solution that
utilised a database to enter rules. Occasionally code
must be added to ensure rules are followed
correctly.

The Broker is responsible for sending external
SOAP requests to the argiculteral UDDI repository
to locate growers and try to do business with them.
Once located and able to communicate with them
the Broker has to "poll" them periodically to get price
and availablility information. This causes a lot of
additional processing in the system and limits the
growth of the Broker.

Buyer

External interaction is based on either ebXML with
many variants. This causes Brokers and Growers a
headache as they have to confirm to the Buyers
protocol as the dominant player. The Buyers also
use mobile devices (PDAs) to augment automantic
inventory control and this needs to be fed into the
system at the point of entry.

Other

Most interaction takes place through browser based
technology. These use a Web server that is JSP
compliant and acts as a SOAP server, routing
requests to the correct application. External access
to and from the applications and browser is through
a firewall and is based on http. Figure 2: Example Of Webservice - Strawberry Grower
Standards Based Message Delivery Accross the Web

Sidebar 2 - Strawberry Growers
Solution

SpiritLite is used to communicate with the PDA
using decoupled messaging over http.

SpiritWave is used to communicate as the principle
communication interface over legacy messaging at
the buyers and over TCP/IP at the growers and
broker. It enables the growers to publish changes in
availability and price. It enables the growers to offer
strawberries using asynchronous messaging and
wait for the electronic confirmations separately. It
enables the broker to receive information in real-
time without the need to "poll" and this in turn leads
to a lower cost of ownership for the brokers total IT
commitment. The buyer can now publish order
requests and wait for the confirmations
asychronously allowing the total IT resource to be
more effectively utilised.

SpiritBroker is used as a SOAP server routing
SOAP messages to the appropriate handlers. This
allows all of the players to add components to their
IT system without needing to change any of the
existign systems. It also plays the role of real-time
message transformation and routing between
legacy systems and their proprietary formats and
other systems. In this way it acts as a neutralising
gateway to legacy applications and technologies.

SpiritIntellect provides all of the players with the
ability to manage the flow of messages that make up
orders. and do so in a way that is personalisable for
each player. In effect it mediates between the
different business protocols in operation and
enables these to change on demand as required.
SpiritIntellect also plays a role for the Broker and
Buyer allowing them to define alerts for price
changes or news on changing weather which may
affect their buying habits.

Figure 4 - SpiritSoft Architecture - Strawberry Grower
 Page 10Copyright ©SpiritSoft, Inc. All rights reserved. Published 2000-2002

g o b e y o n d j m s

www.spiritsoft.com
Americas Headquarters 100 Medway Road, Suite 203, Milford, MA 01751, USA Tel: 508 473 3227 Fax: 508 473 3672

European Headquarters 10 EastCheap, London EC3M 1AJ, UK Tel: +44 20 7398 5900 Fax: +44 20 7398 5901
info@spiritsoft.com

	Abstract
	Introduction
	What are Web Services?
	Service discovery
	Service description
	Service operation

	What are the challenges with Web Services and why?
	How do we address these challenges?

	The SpiritArchitecture and Web Services
	The Infrastructure Answer
	Sidebar 1 - Strawberry Growers
	Grower
	Broker
	Buyer
	Other

	Sidebar 2 - Strawberry Growers Solution

